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Stationary and nonstationary properties of evolving networks with preferential linkage
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Networks evolving by preferential attachment of both external and internal links are investigated. The rate of
adding an external link is assumed to depend linearly on the degree of a preexisting node to which a new node
is connected. The process of creating an internal link, between a pair of existing vertices, is assumed to be
controlled entirely by the vertex that has more links than the other vertex in the pair, and the rate of creation
of such a link is assumed to be, in general, nonlinear in the degree of the more strongly connected vertex. It is
shown that degree distributions of networks evolving only by creating internal links display for large degrees
a nonstationary power-law decay with a time-dependent scaling exponent. Nonstationary power-law behaviors
are numerically shown to persist even when the number of nodes is not fixed and both external and internal
connections are introduced, provided that the rate of preferential attachment of internal connections is nonlin-
ear. It is argued that nonstationary effects are not unlikely in real networks, although these effects may not be
apparent, especially in networks with a slowly varying mean degree.
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Structural and topological properties of many real com-introducing internal connections with bilinear preferences for
plex systems emerging in various disciplines can be depairs of high-degree nodes, has been shown analytically to
scribed by making use of networks which are neither statiglisplay two different scaling regimeshort and long time
nor completely randorfil—11]. These networks can easily be and, in the asymptotically long-time limit, has been proved
modeled by introducing to their creation processes differento be entirely determined by internal link8]. Moreover, it
local mechanisms, such as the system evolution by addin?as been argued that the two time regimes of the power-law
new nodes and Connectiom_lzﬂy preferentia| attachment Torm of the degree distribution sustain even when the pTEf-
of new vertices to existing vertices of large connectivitieserence for attaching incoming nodes becomes nonlif&ar
[1,4,5,15,18 the competition of vertices for linkEl7], ag- This is rather surprising since the nonlinearity in the prefer-
ing of nodeg 18,19, cost and size constrairit3,20], random ential attachment of new nodes to networks evolving only by
removal of node$21,22, etc. This not only enables one to the creation of external links destroys the power-law form of
reproduce dynamic structures of various real networks, buthe degree distributiof27-29.
also allows to indicate which mechanisms are responsible for Generally, the bivariate degree dependence of the rate of
macroscopic properties of particu'ar network Systems] an@referential creation of internal links is Just|f|ed in modeling
Wh|Ch mechanisms are important for Controning the forma_those real networks in Wh|Ch the a.tta.chment of a Connection
tion of structures of these systems. It has recently beeRetween two old nodes is determined by the activity and/or
shown that a wide class of growing networks, inc|uding theby the attractiveness of both the nodes. The most prominent
World Wide Web(WWW) [23], the Internef24], social net- examples of such webs are networks of scientific collabora-
works [25], metabolic network§10], and protein-protein in-  tions[8,25,30,31 However, in many real networks, e.g., in
teraction networks[ll], reveal an ab|||ty to form self- the WWW, the introduction Of- internal.l links depends on the
organized structures, manifesting themselves in a scale-fredtractivenessior the popularity of single vertices rather
power-law decay of the degree distribution. As has beefhan pairs of vertices, and then the appearance of a link be-
proved, such a behavior of the degree distribution can b&veen two existing vertices is governed by the more con-
recovered by resorting to simple evolving models, in whichnected vertex in the pair.
new nodes are attached to randomly chosen existing nodes of Here, the effect of a preferential attachment of internal
high number of links, with the preference rate being a lineafinks, with the rate being dependent on degrees of single
function of the degrees of preexisting nodés. Although nodes, on the degree distribution is examined by means of
the growth of scale-free networks can also involve other lolumerical simulations of two evolving model networks. In
cal mechanismE{‘_]’ the network evolution by attaching new the first network the number of nodes is fixed and the net-
vertices, with the preference rate being linear in node dework evolves by adding internal links, while the second net-
grees, appears to play the crucial role. However, current inork is allowed to evolve by creating internal and external
vestigations of some real, evolving networks, especially thdinks as well. The rate of introducing an internal link be-
WWW [26], the Internef19], and networks of scientific col- tween nodes andj of degrees; andk; is assumed to be
laborations[8], show that the average degree for these net-
works increases with time. This suggests that, in addition to e — (kY LV V1V
attaching new nodes and external links, such systems evolve Tk k) =[O (ki —ki) (k"= kj) Tkl ke @
by also creating internal linkébetween preexisting nodes
Indeed, the degree distribution of networks, which developsvhere®(x)=1 if x=0 and®(x) =0 otherwise,»>0, and
by adding external links with linear preferences as well as bk, denotes the maximal node degree at a current evolution
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T ] FIG. 3. Degree distributions for expanding networks with the
<k>=66104.0 3 linear (v=1), single-node attachment of internal link&) N

1 =10% (b) N=10°. The scaling exponent describing the power-law
decay of the distributions for high degrees changes fronB to
E v=2 asp decreases frop=1 to p=0. The arrows indicate, from
] left to right, functions obtained fop=1.0,0.9...,0.1. The data,
after averaging over ten network realizations, were logarithmically
binned.

k stage[32]. In both cases of models, the exponents al-

FIG. 1. Degree distributions for a fixed-node network Nf IOW(-:_‘d to take values from_a range between 0 and 2.
=10 nodes, with the linear= 1), single-node preferential rate of Fixed-node modelStarting with a homogeneous, con-
attaching links, at different evolution stagés) m=1C2. There is  nected network oN vertices, each of which is linked to two
no power-law behaviob) m=10°. A power-law behavior occurs Other vertices, at every time step, a randomly chosen pair of
for a large-degree tailc) m=10". A truncated power-law decay €Xisting nodes is linked with the preference rate given by Eq.
appears for large degregsl) m=10°. The power-law decay does (1). The process of preferential attaching internal links is
not emerge. The data were averaged over ten network realizatioiepeatedm times. Consequently, the average degt&e
and were logarithmically binned. =1/N=]  k; grows with time, while the structure of the net-
work changes from homogeneous to inhomogeneous. Nu-
merical results obtained forOv<<1 indicate that this model
does not reveal any power-law behavior. However, when
=1, the degree distribution determined for the model exhib-
its a nonstationary power-law behavié(k)~k~” with a
time-dependent scaling exponentfor a large-degree tail or
for a truncated large-degree tail, when the mean degree ex-
ceeds a lower limit value and when it is less than an upper
limit (Figs. 1 and 2 In the linear casei=1), the power-
law behavior emerges at a relatively large valug(lof, in
contrast to transitory scaling properties occurring at early
stages of the evolution of fixed-node networks with a single-
node linear preferential rate of attaching connections, but
without links at the starf4]. In the nonlinear case, when
>1, the considered network model displays nonstationary

oe212 power-law properties at small values{&), with the scaling
< k>=11.
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FIG. 2. Degree distributions in a fixed-node network Méf FIG. 4. Comparison of dependencesyofa) and(k) (b) onp for
=10° nodes, for a nonlinears=1.5), single-node preference rate, different sizes of expanding networks in the case of the linear,
and for different evolution stages at which the power-law decaysingle-node preferential attachment of internal links. The conver-
appears(a m=10, (b) m=10°, (c) m=10% (d) m=10°". The  gence of the respective dependenceNagows displays a scale-
data were averaged over ten network constructions and were logéree (stationary character of the power-law decay of the corre-
rithmically binned. sponding degree distribution.
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0 ol o 0 FIG. 6. Comparison of dependencesofa) and(k) (b) onp for
k expanding networks of different sizes in a nonlinear casel.5.

The curves illustrate, for particular values mf dependences of
and(k) on N. In the case ofk), the dependence on the network
size is very weak.

FIG. 5. Degree distributions for expanding networks with a non-
linear (v=1.5), single-node attachment of internal links) N
=10* and (b) N=10°. The arrows indicatgfrom left to right
curves determined fop=1.0,0.9...,0.1 in the case oN=10% converts into a fixed-node one and then its power-law behav-
and forp=1.0,0.9...,0.2 in the case ol=10°. Data were aver- ior is no longer stationary. In the case when the rate of at-
aged over ten network realizations and were logarithmically binnedtaching internal links is nonlinear with<0v<1, the expand-

ing model does not reveal a power-law behavior, just as the
index y being smaller as compared to the linear case. Asixed-node model. However, ii>1, the degree distribution
illustrated in Fig. 2, at least one of the quantitie@nd(k)  turns out to exhibit for eacp e (0,1) a nonstationary power-
takes values inconsistent with the respective values found fdaw decay(Fig. 5), characterized by a time-dependent index
real networks forv>1 [2]. In particular, bothy and (k) v [Fig. 6(@)], and associated with the mean degree, being
obtained for the fixed-node model with>1 and for the constant or nearly constant in tinj€g. 6(b)]. When v is
WWW disagred 26,33 large enough angd is sufficiently small, such a nonstationary

Expanding modellinitially, the network consists of two power-law behavior persists for long time intervals, with
connected vertices. At every time step, an external link is=3 and(k) € (1,10 (this is shown in Fig. 6 for=1.5), in
added with the probability @ p<1, by attaching a new ver- agreement with values of and(k) determined for real net-
tex to a randomly chosen vertéxwith a linear probability  works[2,26,34.

II(kj)=k;/k., or an internal link is created with the prob-  The preferential attachment of internal links in the con-
ability 1—p by connecting a randomly chosen pair of old sidered network models is entirely governed by more con-
vertices, with a nonlineafin genera), single-node prefer- nected nodes in pairs of joined, preexisting nodes. Certainly,
ence ratg1). Thus, in addition to preference rates, the cre-the process of “attracting” not only new nodes but also old
ation of external and internal links depends on the probabilones by highly connectegopula) nodes takes place in vari-
ity p, in a manner that a large chance of introducing anous real networkge.g., in the WWW. For O<v<1, the
external connection corresponds to an appropriately smafreation of internal links reduces the inhomogeneity of the
chance of introducing an internal link, and conversely. link distribution in expanding networks and, similarly as in

The degree distribution for the linear case=(1) is the fixed-node networks, resists the emergence of the power-
shown in Fig. 3 for networks of different sizes and for dif- law decay of the degree distribution, even for the range of
ferent values ofp. It follows that, for each €&p=<1, this large degrees. I¥=1, the network inhomogeneity due to
distribution displays a power-law foriffor sufficiently large  attaching internal links is sufficiently strong, in order to es-
degrees Furthermore, bothy and (k) prove to be conver- tablish power-law behavior. However, the resulting power-
gent for eactp as the number of nodes grows. This is illus- law behavior is nonstationary both in fixed-node and expand-
trated in Fig. 4 for two networks of very different sizes. ing networks, except for expanding networks witk 1. As
Accordingly, forv=1, the power-law behavior of the model numerical results have shown, the time variation of the ex-
is scale-freg(stationary. As Fig. 3a) indicates, the scaling ponenty determined for expanding networks with>1 is
exponent crosses over for fixéd from the valuey=3 to  very slow when the creation of internal links is much less
y=2 when(k) grows (or whenp—0), similarly as in the probable than the attachment of external links. This indicates
case of time evolution of networks with bilinear preferential that nonstationary effects in real networks can be difficult to
attachments of internal link§8]. When p decreases, the observe in relatively short time intervals and that, in the case
mean degree increases while the degree range, in which tlé real networks with slowly varying mean degré=g., in
power-law tail occurs, decreases and the deviation from théhe case of the WW\W the power-law behavior, which is
exact power-law behavior for small degrees becomes morkelieved to be stationafy2,4,5,14,23 can in fact be nonsta-
pronounced. Finally, in the limjp— 0, the expanding model tionary.
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