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Stationary and nonstationary properties of evolving networks with preferential linkage
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~Received 6 June 2002; published 16 December 2002!

Networks evolving by preferential attachment of both external and internal links are investigated. The rate of
adding an external link is assumed to depend linearly on the degree of a preexisting node to which a new node
is connected. The process of creating an internal link, between a pair of existing vertices, is assumed to be
controlled entirely by the vertex that has more links than the other vertex in the pair, and the rate of creation
of such a link is assumed to be, in general, nonlinear in the degree of the more strongly connected vertex. It is
shown that degree distributions of networks evolving only by creating internal links display for large degrees
a nonstationary power-law decay with a time-dependent scaling exponent. Nonstationary power-law behaviors
are numerically shown to persist even when the number of nodes is not fixed and both external and internal
connections are introduced, provided that the rate of preferential attachment of internal connections is nonlin-
ear. It is argued that nonstationary effects are not unlikely in real networks, although these effects may not be
apparent, especially in networks with a slowly varying mean degree.
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Structural and topological properties of many real co
plex systems emerging in various disciplines can be
scribed by making use of networks which are neither st
nor completely random@1–11#. These networks can easily b
modeled by introducing to their creation processes differ
local mechanisms, such as the system evolution by ad
new nodes and connections@12–14#, preferential attachmen
of new vertices to existing vertices of large connectivit
@1,4,5,15,16#, the competition of vertices for links@17#, ag-
ing of nodes@18,19#, cost and size constraints@3,20#, random
removal of nodes@21,22#, etc. This not only enables one t
reproduce dynamic structures of various real networks,
also allows to indicate which mechanisms are responsible
macroscopic properties of particular network systems,
which mechanisms are important for controlling the form
tion of structures of these systems. It has recently b
shown that a wide class of growing networks, including t
World Wide Web~WWW! @23#, the Internet@24#, social net-
works @25#, metabolic networks@10#, and protein-protein in-
teraction networks@11#, reveal an ability to form self-
organized structures, manifesting themselves in a scale
power-law decay of the degree distribution. As has be
proved, such a behavior of the degree distribution can
recovered by resorting to simple evolving models, in wh
new nodes are attached to randomly chosen existing nod
high number of links, with the preference rate being a lin
function of the degrees of preexisting nodes@5#. Although
the growth of scale-free networks can also involve other
cal mechanisms@4#, the network evolution by attaching ne
vertices, with the preference rate being linear in node
grees, appears to play the crucial role. However, current
vestigations of some real, evolving networks, especially
WWW @26#, the Internet@19#, and networks of scientific col
laborations@8#, show that the average degree for these n
works increases with time. This suggests that, in addition
attaching new nodes and external links, such systems ev
by also creating internal links~between preexisting nodes!.
Indeed, the degree distribution of networks, which devel
by adding external links with linear preferences as well as
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introducing internal connections with bilinear preferences
pairs of high-degree nodes, has been shown analyticall
display two different scaling regimes~short and long time!
and, in the asymptotically long-time limit, has been prov
to be entirely determined by internal links@8#. Moreover, it
has been argued that the two time regimes of the power-
form of the degree distribution sustain even when the p
erence for attaching incoming nodes becomes nonlinear@8#.
This is rather surprising since the nonlinearity in the pref
ential attachment of new nodes to networks evolving only
the creation of external links destroys the power-law form
the degree distribution@27–29#.

Generally, the bivariate degree dependence of the rat
preferential creation of internal links is justified in modelin
those real networks in which the attachment of a connec
between two old nodes is determined by the activity and
by the attractiveness of both the nodes. The most promin
examples of such webs are networks of scientific collabo
tions @8,25,30,31#. However, in many real networks, e.g.,
the WWW, the introduction of internal links depends on t
attractiveness~or the popularity! of single vertices rather
than pairs of vertices, and then the appearance of a link
tween two existing vertices is governed by the more c
nected vertex in the pair.

Here, the effect of a preferential attachment of intern
links, with the rate being dependent on degrees of sin
nodes, on the degree distribution is examined by mean
numerical simulations of two evolving model networks.
the first network the number of nodes is fixed and the n
work evolves by adding internal links, while the second n
work is allowed to evolve by creating internal and extern
links as well. The rate of introducing an internal link b
tween nodesi and j of degreeski andkj is assumed to be

P~ki ,kj !5@Q~ki2kj !~ki
n2kj

n!1kj
n#/kc

n , ~1!

whereQ(x)51 if x>0 andQ(x)50 otherwise,n.0, and
kc denotes the maximal node degree at a current evolu
©2002 The American Physical Society02-1
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FIG. 1. Degree distributions for a fixed-node network ofN
5105 nodes, with the linear (n51), single-node preferential rate o
attaching links, at different evolution stages:~a! m5102. There is
no power-law behavior.~b! m5103. A power-law behavior occurs
for a large-degree tail.~c! m5104. A truncated power-law decay
appears for large degrees.~d! m5105. The power-law decay doe
not emerge. The data were averaged over ten network realiza
and were logarithmically binned.

FIG. 2. Degree distributions in a fixed-node network ofN
5105 nodes, for a nonlinear (n51.5), single-node preference rat
and for different evolution stages at which the power-law de
appears:~a! m5102, ~b! m5103, ~c! m5104, ~d! m5105. The
data were averaged over ten network constructions and were
rithmically binned.
06710
stage@32#. In both cases of models, the exponentn is al-
lowed to take values from a range between 0 and 2.

Fixed-node model. Starting with a homogeneous, con
nected network ofN vertices, each of which is linked to two
other vertices, at every time step, a randomly chosen pa
existing nodes is linked with the preference rate given by
~1!. The process of preferential attaching internal links
repeatedm times. Consequently, the average degree^k&
51/N( i 51

N ki grows with time, while the structure of the ne
work changes from homogeneous to inhomogeneous.
merical results obtained for 0<n,1 indicate that this mode
does not reveal any power-law behavior. However, when
>1, the degree distribution determined for the model exh
its a nonstationary power-law behaviorP(k);k2g with a
time-dependent scaling exponentg, for a large-degree tail or
for a truncated large-degree tail, when the mean degree
ceeds a lower limit value and when it is less than an up
limit ~Figs. 1 and 2!. In the linear case (n51), the power-
law behavior emerges at a relatively large value of^k&, in
contrast to transitory scaling properties occurring at ea
stages of the evolution of fixed-node networks with a sing
node linear preferential rate of attaching connections,
without links at the start@4#. In the nonlinear case, whenn
.1, the considered network model displays nonstation
power-law properties at small values of^k&, with the scaling
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y
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FIG. 3. Degree distributions for expanding networks with t
linear (n51), single-node attachment of internal links:~a! N
5104, ~b! N5105. The scaling exponent describing the power-la
decay of the distributions for high degrees changes fromg53 to
g52 asp decreases fromp51 to p50. The arrows indicate, from
left to right, functions obtained forp51.0,0.9, . . . ,0.1. The data,
after averaging over ten network realizations, were logarithmica
binned.

FIG. 4. Comparison of dependences ofg ~a! and^k& ~b! onp for
different sizes of expanding networks in the case of the line
single-node preferential attachment of internal links. The conv
gence of the respective dependences asN grows displays a scale
free ~stationary! character of the power-law decay of the corr
sponding degree distribution.
2-2
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index g being smaller as compared to the linear case.
illustrated in Fig. 2, at least one of the quantitiesg and ^k&
takes values inconsistent with the respective values found
real networks forn.1 @2#. In particular, bothg and ^k&
obtained for the fixed-node model withn.1 and for the
WWW disagree@26,33#.

Expanding model. Initially, the network consists of two
connected vertices. At every time step, an external link
added with the probability 0,p<1, by attaching a new ver
tex to a randomly chosen vertexi, with a linear probability
P(ki)5ki /kc , or an internal link is created with the prob
ability 12p by connecting a randomly chosen pair of o
vertices, with a nonlinear~in general!, single-node prefer-
ence rate~1!. Thus, in addition to preference rates, the c
ation of external and internal links depends on the proba
ity p, in a manner that a large chance of introducing
external connection corresponds to an appropriately sm
chance of introducing an internal link, and conversely.

The degree distribution for the linear case (n51) is
shown in Fig. 3 for networks of different sizes and for d
ferent values ofp. It follows that, for each 0,p<1, this
distribution displays a power-law form~for sufficiently large
degrees!. Furthermore, bothg and ^k& prove to be conver-
gent for eachp as the number of nodes grows. This is illu
trated in Fig. 4 for two networks of very different size
Accordingly, forn51, the power-law behavior of the mode
is scale-free~stationary!. As Fig. 3~a! indicates, the scaling
exponent crosses over for fixedN from the valueg53 to
g52 when^k& grows ~or whenp→0), similarly as in the
case of time evolution of networks with bilinear preferent
attachments of internal links@8#. When p decreases, the
mean degree increases while the degree range, in which
power-law tail occurs, decreases and the deviation from
exact power-law behavior for small degrees becomes m
pronounced. Finally, in the limitp→0, the expanding mode

FIG. 5. Degree distributions for expanding networks with a no
linear (n51.5), single-node attachment of internal links:~a! N
5104 and ~b! N5105. The arrows indicate~from left to right!
curves determined forp51.0,0.9, . . . ,0.1 in the case ofN5104,
and forp51.0,0.9, . . . ,0.2 in the case ofN5105. Data were aver-
aged over ten network realizations and were logarithmically binn
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converts into a fixed-node one and then its power-law beh
ior is no longer stationary. In the case when the rate of
taching internal links is nonlinear with 0,n,1, the expand-
ing model does not reveal a power-law behavior, just as
fixed-node model. However, ifn.1, the degree distribution
turns out to exhibit for eachpP(0,1) a nonstationary power
law decay~Fig. 5!, characterized by a time-dependent ind
g @Fig. 6~a!#, and associated with the mean degree, be
constant or nearly constant in time@Fig. 6~b!#. When n is
large enough andp is sufficiently small, such a nonstationar
power-law behavior persists for long time intervals, withg
.3 and^k&P^1,10& ~this is shown in Fig. 6 forn51.5), in
agreement with values ofg and^k& determined for real net-
works @2,26,34#.

The preferential attachment of internal links in the co
sidered network models is entirely governed by more c
nected nodes in pairs of joined, preexisting nodes. Certai
the process of ‘‘attracting’’ not only new nodes but also o
ones by highly connected~popular! nodes takes place in vari
ous real networks~e.g., in the WWW!. For 0<n,1, the
creation of internal links reduces the inhomogeneity of
link distribution in expanding networks and, similarly as
the fixed-node networks, resists the emergence of the po
law decay of the degree distribution, even for the range
large degrees. Ifn>1, the network inhomogeneity due t
attaching internal links is sufficiently strong, in order to e
tablish power-law behavior. However, the resulting pow
law behavior is nonstationary both in fixed-node and expa
ing networks, except for expanding networks withn51. As
numerical results have shown, the time variation of the
ponentg determined for expanding networks withn.1 is
very slow when the creation of internal links is much le
probable than the attachment of external links. This indica
that nonstationary effects in real networks can be difficult
observe in relatively short time intervals and that, in the c
of real networks with slowly varying mean degree~e.g., in
the case of the WWW!, the power-law behavior, which is
believed to be stationary@2,4,5,14,23# can in fact be nonsta
tionary.

-

d.

FIG. 6. Comparison of dependences ofg ~a! and^k& ~b! onp for
expanding networks of different sizes in a nonlinear casen51.5.
The curves illustrate, for particular values ofp, dependences ofg
and ^k& on N. In the case of̂ k&, the dependence on the netwo
size is very weak.
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